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ARTICLE

Cluster Sampling: A Pervasive, Yet Little Recognized Survey

Design in Fisheries Research

Gary A. Nelson*

Massachusetts Division of Marine Fisheries, Annisquam River Marine Fisheries Field Station,

30 Emerson Avenue, Gloucester, Massachusetts 01930, USA

Abstract

Cluster sampling is a common survey design used pervasively in fisheries research to sample fish populations, but it
is not widely recognized by researchers. Because fish collected via cluster sampling are not independent of each other,
standard simple random sampling estimators and statistical tests that assume independence cannot be used to make
inferences about fish populations. If the clustered nature of fisheries data is ignored, the main consequence is that the
type I error rate of common statistical tests will be severely inflated and significant differences will often be found in
group comparisons where none exist. The goal of this paper is to provide an introduction to the estimation of population
attributes and analysis of fisheries data collected via cluster sampling. This article addresses the nature of clustered
fisheries data, reviews the random cluster sampling estimators of population attributes, explores the implications of
violating the assumption of independence in hypothesis testing, and reviews current statistical approaches that can

be used to analyze appropriately clustered data.

“What is right is not always popular and what is popular is not always
right”—Albert Einstein (1879-1955)

The estimation of biological parameters of fish populations,
for example, average size and maturity at age, is a major task
of many state, federal, and academic fisheries researchers. Such
information is often used in the stock assessment process where
model estimates of management values (e.g., fishing mortality)
are used by regulatory boards to control the harvesting of fish
population or in ecological studies devised to test some statis-
tical hypothesis about populations (e.g., growth differences). If
population attributes are estimated incorrectly, the results, and
conclusions on which they are based, will be misleading and
may impact unnecessarily the livelihoods of fishers if used in
making management decisions.

Survey sampling is used in fisheries research to estimate fish
population attributes after observing a sample of individuals
from the population. The sampling design (the procedure by
which the individuals are selected) is usually chosen to produce
the most accurate and precise (low variance) estimates given the

monetary resources available to the researcher (Cochran 1977).
Sampling designs and associated estimators used commonly in
fisheries research are based on probability, which means as-
sumptions regarding the selection of individuals must be met to
produce unbiased estimates of population attributes (Thompson
2002).

When estimating biological attributes of fish populations, re-
searchers often assume that fish are collected by using simple
random sampling (SRS), a well-known sampling design with
standard estimators for mean, proportion, and ratios and cor-
responding measures of variance found in most textbooks on
elementary statistics and survey sampling (e.g., Lohr 1999; Zar
1999) regardless of the original design used. The assumptions of
SRS require that each individual selected for the sample has the
same nonzero probability of occurring in the sample, and that the
selection of one individual is not influenced by other individuals
already selected (Lohr 1999). Independence among individuals
is the backbone of estimation in SRS as well as common statisti-
cal methods used in hypothesis testing (Sokal and Rohlf 1995).
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FIGURE 1. Depictions of random sampling (top panel) and cluster sampling
(bottom panel) of fish populations. [Figure available online in color.]

To meet the assumptions of SRS in fisheries research, fish
would have to be captured individually and at random (Figure
1A) to appropriately apply the SRS estimators and use common
statistical methods. This type of selection is nearly impossible in
fisheries research because fish populations are distributed over
large areas and the types of gear generally used (e.g., seines,
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trawls, electroshockers) capture fish in groups or clusters (Fig-
ure 1B), not individually. (Although capable of selecting indi-
viduals, gear types such as rod and reel and spear still produce
clustering because sampling efforts are usually limited to several
small areas within the range of a population.) In this case, the
appropriate design for estimating population attributes is ran-
dom cluster sampling (RCS) since the inclusion of an individual
in a sample is based on the probability of selecting a cluster, not
an individual (Pennington and Volstad 1994). Therefore, RCS
estimators must be used to estimate population attributes and
statistical tests must be adjusted to account for lack of indepen-
dence among individuals to obtain unbiased results (Galbraith
et al. 2010). Unfortunately, it appears that RCS is not often
recognized by fisheries researchers. In a review of all articles
published in the journal U.S. National Marine Fisheries Ser-
vice Fishery Bulletin from 2008 to 2012, authors of only 1 of
54 papers that estimated population attributes or conducted hy-
pothesis testing using samples collected via cluster sampling
identified clustering and analyzed the data appropriately; the
authors of the remaining papers assumed SRS.

The most likely reason for improper analysis of RCS data is
lack of awareness. Cluster sampling for estimating population
attributes is usually not taught in fisheries courses except in
the context of estimating abundance (e.g., American Fisheries
Society’s Fisheries Techniques book editions) and has been
described rarely in publications on designs of trawl surveys
(e.g., Fogarty 1985). Because they are unaware, researchers
improperly associate the sampling design used to measure fish
abundance (e.g., simple or stratified random designs) as the
design used to collect individuals. The clear implications of this
mistake are that the estimates of population attributes, results
of hypothesis testing, and conclusions drawn from statistical
analyses in many published papers may be incorrect because
clustering was not taken into account in the estimation process
or statistical analyses.

As an aid to improving data analysis in fisheries research,
this paper provides an introduction to the estimation of popula-
tion attributes and analysis of fisheries data collected via cluster
sampling. I address the nature of clustered fisheries data, re-
view the RCS estimators of population attributes, explore the
implications of violating the assumption of independence in hy-
pothesis testing, and review current statistical approaches that
can be used to analyze appropriately clustered data.

OVERVIEW OF CLUSTER SAMPLING

In fisheries research, gear surveys are routinely used to mea-
sure relative abundance of fish populations by using sampling
designs such as stratified sampling that incorporate SRS in site
selection (ASMFC 1994). A standardized haul or tow with
known swept-area is used to sample fish and individual sites
of size equal to the known swept-area are selected randomly.
The number of fish caught in each haul is used to develop in-
dices of relative abundance usually by calculating the mean
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number per standardized tow or swept-area (ASMFC 1994). In
this case, use of SRS-based estimators is appropriate because
the primary sampling unit is the standardized swept-area site
and the number of fish caught is an attribute of the site.

When the research interests turn towards making inferences
about fish populations caught in the gear survey, the underly-
ing sampling design becomes RCS based. A cluster (the group
of fish in a tow or haul) is the primary sampling unit that has
been selected randomly in association with the gear survey. In
RCS, inclusion of an individual in a sample is based on the
probability of selecting a cluster; thus, the selection of one indi-
vidual is dependent on the selection of another individual (Lohr
1999; Thompson 2002). Because of underlying factors that af-
fect membership, individuals of a cluster tend to be more similar
to one another than to members of other clusters (Pennington
and Volstad 1994). This is especially true for gregarious fishes
as individuals of similar size often aggregate together (Pitcher
and Parrish 1993), and their spatial distribution is often related
to size (Milikin 1993; Osenberg et al. 1994). Because of this
within-cluster similarity, the information content of clustered
data is not the same as data collected via SRS sampling because
the same information is partially collected from individuals in
a cluster and not from other members of the population (Lohr
1999). It is the level of similarity among members of clusters
that creates the degree of nonindependence.

Estimation of Population Attributes, Variance, and
Confidence Intervals

Estimators for simple random cluster sampling (SRCS)
should be used in the estimation of fish attributes. In SRCS,
the clusters are chosen randomly via the abundance survey
and attributes of individual cluster members are measured.
If a stratified random design is used, SRCS is still assumed
because the number of sites allocated to a stratum is usually
proportional to stratum area, and it is essential to choose a
unit size that is sufficient for the area of interest rather than
for specific subareas (Pennington and Volstad 1994). If the
allocation of sites is not proportional to stratum area, stratified
RCS estimators are available (Cochran 1977; Fogarty 1985).

The survey statistics of cluster sampling that are of inter-
est to fisheries researchers are the mean attribute (e.g., mean
length, mean stomach weight) and proportion (e.g., sex compo-
sition) and their associated variances. Because the fish attribute
and cluster size are random variables in SRCS, the mean (r)
and proportion (p) are estimated by using ratio estimators. The
general estimators for r and p are

r'z MiAl
= lel M, (1)
Zi:l M;
and
" oa;
Lo 2
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where M; is the total number of fish (cluster size) in cluster i, {1; is
the mean attribute of fish in cluster i, and a; is the number of fish
of a given condition in cluster i (Cochran 1977). The estimate
of Lin ris [ = Z?’I:l vij/M; when one-stage sampling of
individuals (all fish are measured in each cluster) occurs, and
fu = 371, yij/m; when two-stage sampling (a subsample of
fish is taken) occurs, where y;; is the attribute for fish j in cluster
i and m; is the number of fish in the cluster subsample. The
estimator of p when a subsample of fish is measured is

The approximate variance estimator for r is

— n a2
var), = 2 > (%ﬂ? l()ul ?) 5

and for p is
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N nn—1) ’ @)
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where N is the total number of clusters with fish available for
sampling, M is the mean number of fish per haul (cluster), n is
the total number of clusters with fish, and p; is the proportion
for cluster i. If two-stage sampling is used, a variance term to
account for subsampling must be added to the variance estimates
above. For r, the second term (V2) is

vy L N~ MP MmOy )
T N nZI\_/I i1 m; M,' m; — 1
and for p is
Vo n 1 M2 M —m; pi(l— py)
) 7 . ,
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The distribution of any discrete attribute of fish such as length
or age may be estimated (assuming a multinomial distribution)
by using the proportion equations applied to data for discrete
bins. For example, with one-stage sampling, the proportion (p)
of fish in the kth bin class is estimated by

N Do dik

Pk = <=n -
Z?:l M;

The variance estimate would be the same as equation (4)
except the k subscript would be added to designate the variance
associated with the k bin class.

In practice, the finite population correction factor, (N-n)/N,
may be dropped from the variance estimate because the number
of clusters sampled is usually small compared with the total
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number available, and the variance term for subsampling may
be negligible because n/N is usually small. In general, these esti-
mates of mean, proportion, and their variances are not unbiased;
however, the bias should become negligible as cluster sample
size increases (Cochran 1977).

A confidence interval for the estimate of r (and p) in SRCS
is calculated by

P —typdr-v/var(r) < R <7+t qr - v/ var(r).

where ¢ is the two-tailed Student’s ¢ critical value for o (the
allowable probability of error) that provides 100(1 — a)% con-
fidence intervals, and df are the degrees of freedom associated
with the estimate. The degrees of freedom will not be based on
the number of individuals (D _M; for one-stage sampling), as is
often wrongly assumed, but will range between the number of
clusters minus one and the number of individuals minus one
depending on the level of within-cluster similarity. The df may
be approximated by using the df equations derived by Hedges
(2007) for a two-sample ¢-test for unequal cluster sizes cor-
rected for clustering (L. Hedges, Northwestern University, per-
sonal communication). For fisheries data, the df obtained may
be slightly optimistic because the design effect equation used
to correct for clustering may underestimate the true clustering
effect for clusters of unequal size (Eldridge et al. 2006).

An alternate method for calculating confidence intervals is
the percentile bootstrap method (Haddon 2001). Bootstrapping
proceeds by generating b bootstrap samples, each consisting of
data from n clusters drawn randomly with replacement from the
original n clusters, and estimating r (or p) for each bootstrap
sample. The estimate of the 100(1 — a)% confidence intervals is
determined by taking the 100(o/2) and 100(1 — a/2) percentiles
of the b bootstrap replicate samples sorted in ascending order
(Haddon 2001). Advantages of this method are that asymmet-
rical confidence intervals may be produced and the df are not
needed. A disadvantage is that bootstrapping may produce con-
fidence intervals wider than they should be since the variance
may be overestimated for the sample sizes typically observed
in fisheries research (see Improved Variance Estimates section
below).

Components of Variance

Variances of population attributes estimated by using cluster
sampling tend to be larger than variances estimated by using
SRS because, not only are the attribute characteristics of the
population embedded in the estimate, but characteristics related
to the population’s spatial distribution are as well. As long as
attribute size and variance are not related to the density of fish
at a station and the level of within-cluster similarity does not
depend on the total number of fish caught, Pennington and
Volstad (1994) demonstrated that the variance formula of r can
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be written to show its variance components, i.e.,

2

var(f)py = M—Vn 1+ ((1+CV) M —1)p),

where cf, is the population variance of attribute y, CV is the
coefficient of variation for cluster sizes (substituted for s3,/M in
their equation 2.2), p is the intracluster correlation coefficient
(a measure of within-cluster similarity; Donner 1986), and
sy 18 SRS sample standard deviation for M; values > 0. The
above equation shows that the variance of r is composed of
ozy/Mn, the variance of the mean under SRS, multiplied by
1 + [(1 + CV? x M- 1]p, a variance inflation factor (VIF)
due to the effect of clustering. The VIF is related to the average
cluster size, the variability in size among clusters (CV), and
the within-cluster similarity of individuals (p) (Pennington and
Volstad 1994). The relationship between the VIF and these
parameters are shown in Figure 2 for a range of parameter
values. If p = 0, the variance of the ratio estimator is equivalent
to the variance of the mean under SRS because there is no
inflation (VIF = 1). When p > 0, the variance of the mean
becomes greater than the variance under SRS because VIF
increases as M, CV, and p increase (Figure 2). Even if p is small,
the effect of clustering still can be large because M and CV may
be very large for gear surveys (Pennington and Volstad 1994).

Parameters of var(r)py may be estimated from observed at-
tribute data following methods of Pennington et al. (2002) and
Donner (1986). oi is estimated by

6_2 _ er'lzl Z’]’l,:l (M’/mt)()’z; _ f)Z
' (2?:1 Mi) -1 ’

and sy, for the calculation of CV is estimated by using the
SRS estimator of the standard deviation (e.g., Sokal and Rohlf
1995). The term p is estimated by using the results of an ANOVA
applied to attribute data where the cluster index is treated as a
factor (Donner 1986). Given the between (BMS) and within
(WMS) mean squares from the ANOVA table and assuming an
underlying random effects model, p is calculated by

BMS — WMS
BMS + (Mg — 1) WMS’

p=

where M adj 18 the adjusted mean cluster size for unequal cluster
sizes defined by

_ 1 - Y M?
Mg = M; — ==,
%4 n—l(z Z lMi

Estimates of parameters of var(r)py for length data of the
top five most abundant juvenile and adult fish and invertebrate
species caught in common stratified random trawl and seine
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FIGURE 2. Contour plots of the variance inflation factor (VIF) due to clustering for a range of mean cluster sizes and coefficients of variation (CVs) at 10

intracluster correlation levels. [Figure available online in color.]

surveys from five states along the U.S. Atlantic coast are
shown in Table 1. The values of intracluster correlation (range,
0.12-0.88; median, 0.40), M/ (range, 13.3-3,618; median, 49.0)
and CV (range, 0.57-3.49; median, 1.38) are typical for species
caught in these types of gear surveys (e.g., Pennington and
Volstad 1994). The moderate to high VIFs (range, 3.8-10,469;
median, 75.3) produced from these parameters further demon-
strates that clustering is a large contributor to the total variance
of mean body sizes of most species (Table 1).

Effective Sample Size

The effective sample size (ESS) is a useful statistic for
quantifying the amount of information in clustered data and is
defined as the size of an independent sample that would equal
the amount of information in the actual correlated sample (Faes
et al. 2009). In fisheries, ESS is the equivalent number of fish
that would need to be sampled randomly to obtain the same

level of precision observed for a cluster sampling estimator
(Pennington and Volstad 1994; Pennington et al. 2002). In RCS,
ESS is related to the level of intracluster correlation. When
p = 0, all observations are independent within a cluster and
ESS equals the total number of observations. As p approaches
1 (perfect correlation), the ESS approaches the number of
clusters in a sample (Faes et al. 2009). Pennington et al. (2002)
showed that the ESS can be estimated by using the estimate of
population variance, ci, and the variance of r as follows:

A2
gy = —2
T Var(7)’

where my is the effective sample size. The ESS for fish length
data are typically much smaller than the total number of fish
measured and often range between 0.1% to 12% of the total
number measured (Table 2; Pennington et al. 2002; Zhang
and Cadrin 2013). These ESS levels are equivalent to only



CLUSTER SAMPLING IN FISHERIES RESEARCH

931

TABLE 1. Estimates of mean body length (r; cm) and variance components for the top five most abundant species caught in Atlantic state coastal stratified
random surveys during spring 2008; n7 = total hauls made during the survey, n is the number of hauls with fish, # is the mean cluster size for M; > 0, oy is the
standard deviation of the population length distribution, p is the intracluster correlation coefficient, CV is the coefficient of variation of positive cluster sizes, and
VIF is the approximate variance inflation factor due to clustering. Only species with n > 3 are shown.

State Gear  nr Species n M r(cm) o o CV VIF
Massachusetts. Trawl® 103  Atlantic Cod Gadus morhua 98 254.0 6.1 6.7 084 3.09 2,254.3
Northern Sand Lance Ammodytes 32 3169 119 2.1 0.68 2.81 1,918.1
dubius
Scup Stenotomus chrysops 31 2173 202 34 031 1.65 251.8
Longhorn Sculpin Myoxocephalus 52 1140 236 3.8 0.28 1.78 134.9
octodecemspinosus
Yellowtail Flounder Limanda 51 66.7 314 3.7 024 206 85.9
ferruginea
Connecticut Trawl® 40  Scup 39 6772 185 49 040 1.38 798.6
Butterfish Peprilus triacanthus 25 1748 153 22 0.13 1.20 56.6
Longfin inshore squid Loligo pealeii ~ 28 66.0 104 52 021 2.11 75.3
Winter Flounder Pseudopleuronectes 37 395 163 5.0 0.16 1.00 13.3
americanus
Windowpane Scophthalmus aquosus 23 156 223 55 0.12 0.76 3.8
New Jersey Trawl® 39  Butterfish 39 3,618.1 79 25 050 2.19 10,469.7
Scup 33 11,0324 9.0 09 021 3.11 23050
Longfin inshore squid 39 655.6 6.2 38 0.16 096 200.0
Round Herring Etrumeus teres 14 363.3 89 0.8 0.88 3.49 4,231.4
Northern Searobin Prionotus 38 1241 203 33 037 330 545.8
carolinus
North Carolina Trawl! 54  Spot Leiostomus xanthurus 46 117.4 99 29 029 0.57 45.7
Atlantic Croaker Micropogonias 39 103.5 10.8 34 0.34 0.67 52.1
undulatus
Blue crab Callinectes sapidus 53 34.2 7.0 28 0.14 1.33 14.0
Brown shrimp Farfantepenaeus 27 49.0 94 15 026 099 25.8
aztecus
Pink shrimp Farfantepenaeus 37 300 11.6 1.6 0.19 1.30 16.3
duorarum
Florida Trawl® 15  Portunus crab Portunus spp. 13 32.8 41 09 071 1.62 85.2
Pinfish Lagodon rhomboides 8 17.0 80 27 0.67 124 29.0
Pigfish Orthopristis chrysoptera 6 18.2 6.8 20 058 1.56 36.5
Leopard Searobin Prionotus scitulus 12 9.1 84 35 050 1.13 10.9
Silver Jenny Eucinostomus gula 8 9.9 80 1.7 0.68 1.51 22.5
Florida Seine’ 34  Pinfish 10 176.1 38 1.1 039 1.20 168.0
Silver Perch Bairdiella chrysoura 8 46.2 35 1.1 041 133 52.5
Rainwater Killifish Lucania parva 7 474 27 04 045 2.02 109.0
Tidewater Mojarra Eucinostomus 7 28.4 24 0.6 081 1.62 83.4
harengulus
Clown Goby Microgobius gulosus 6 30.3 3.1 07 052 0.68 23.5
Florida Seine® 20  Pinfish 15 137.0 99 25 040 1.36 156.8
Hardhead Catfish Ariopsis felis 11 429 233 54 081 234 224.0
Tidewater Mojarra 9 13.9 9.5 0.8 036 0.68 8.0
Silver Jenny 7 17.3 84 08 043 1.62 27.3
Pigfish 6 13.3 9.8 24 0.60 1.03 16.9

“Massachusetts Division of Marines Fisheries, coastal state waters, May, 15.5-m footrope length, 20-min tow duration.
bConnecticut Department of Environmental Protection, Long Island Sound, June, 14.0-m footrope length, 30-min tow duration.

“New Jersey Department of Fish, Game and Wildlife, coastal state waters, June, 30.5-m footrope length, 20-min tow duration.

dNorth Carolina Division of Marine Fisheries, Pamlico Sound, June, 10.4-m footrope length, 20-min tow duration.
°Florida Fish and Wildlife Conservation Commission, Tampa Bay, June, 6.1-m footrope length, 10-min tow duration.
Florida Fish and Wildlife Conservation Commission, Tampa Bay, June, 21.0 x 1.8-m center bag seine.
2Florida Fish and Wildlife Conservation Commission, Tampa Bay, June, 183.0 x 2.5-m center bag seine.
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TABLE 2. Estimates of effective sample size (m,) for body size of the top five most abundant species caught in Atlantic state coastal stratified random surveys;
n is the number of hauls with fish, M is the total number of fish caught, m is the number of fish measured, c§ is the estimate of variance of the population length

distribution, var(r); is the variance of the mean body size from jackknifing.

State Species n M m o’ var(r); Mgy Megln
Massachusetts Atlantic Cod 98 24,897 3,620 45.1 0.69 65 0.7
Northern Sand Lance 32 10,142 967 4.2 1.34 3 0.1
Scup 31 6,737 1,555 11.7 0.51 23 0.7
Longhorn Sculpin 52 5,928 2,227 14.1 0.30 47 0.9
Yellowtail Flounder 51 3,403 1,315 13.9 0.36 39 0.8
Connecticut Scup 39 26,409 6,773 24.2 0.68 36 0.9
Butterfish 25 4,369 878 4.7 0.06 81 3.2
Longfin inshore squid 28 1,849 965 27.0 0.84 32 1.1
Winter Flounder 37 1,461 1,279 25.1 0.19 135 3.7
Windowpane 23 360 344 30.1 0.27 110 4.8
New Jersey Butterfish 39 141,106 2,966 6.3 0.63 10 0.3
Scup 33 34,071 1,208 0.8 0.01 56 1.7
Longfin inshore squid 39 25,570 3,828 14.4 0.09 158 4.1
Round Herring 14 5,087 329 0.6 1.11 1 <0.1
Northern Searobin 38 4,716 1,264 11.1 1.48 8 0.2
North Carolina Spot 46 5,400 1,878 8.6 0.08 109 24
Atlantic Croaker 39 4,035 1,288 11.3 0.14 79 2.0
Blue crab 53 1,812 1,695 8.0 0.04 216 4.1
Brown shrimp 27 1,323 618 2.2 0.04 53 2.0
Pink shrimp 37 1,112 613 2.4 0.04 61 1.6
Florida (trawl) Portunus crab 13 426 90 0.7 0.12 6 0.5
Pinfish 8 136 63 7.2 2.60 3 0.3
Pigfish 6 109 30 42 2.38 2 0.3
Leopard Searobin 12 109 76 12.3 2.06 6 0.5
Silver Jenny 8 79 38 2.7 1.80 2 0.2
Florida (seine) Pinfish 10 1,761 133 1.2 0.13 9 0.9
Silver Perch 8 370 84 1.1 0.18 6 0.8
Rainwater Killifish 7 332 45 0.2 0.09 2 0.3
Tidewater Mojarra 7 199 49 0.4 0.35 1 0.1
Clown Goby 6 182 69 0.5 0.11 4 0.7
Florida (seine) Pinfish 15 2,055 261 6.3 0.83 8 0.5
Hardhead Catfish 11 472 100 29.4 43.46 1 0.1
Tidewater Mojarra 9 125 113 0.6 0.04 15 1.6
Silver Jenny 7 121 61 0.6 0.14 4 0.6
Pigfish 6 80 60 5.6 0.91 6 1.0

collecting about one fish per tow or haul (m./n; Table 2;
Pennington et al. 2002; Zhang and Cadrin 2013).

Improved Variance Estimates

The usual variance estimators for r (equation 3) and p (equa-
tion 4) are approximations based on the delta method and may
underestimate the true variance when the sample sizes are small
(Cochran 1977; Pennington and Volstad 1994). Improved es-
timates of variance can be obtained by using the computer-
intensive jackknife or ordinary bootstrap methods (Haddon
2001) where resampling is made at the cluster level. Penning-
ton and Volstad (1994) compared the usual approximation and

jackknife estimators of standard error (square root of variance)
of r for mean length via simulation and found that the latter pro-
duced consistently more accurate estimates than the former. Ko-
var et al. (1988) found in a simulation study of stratified simple
random sampling that bootstrap-based estimators tend to overes-
timate the variance of ratios, and this appears true for r at cluster
samples sizes typically observed in fisheries surveys (Table 3).

HYPOTHESIS TESTING
The frequent application of statistics in fisheries research
is to test some scientific hypothesis. Statistical techniques are
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TABLE 3. Simulation results for assessing the performance of the usual approximation (approx.), the jackknife, and the ordinary bootstrap estimators of standard
error (square root of variance) of the ratio estimator of mean length following Pennington and Volstad (1994). For each species, 2,000 samples of cluster sample
sizes 10, 20, and 30 were generated from the positive catches; CV is the coefficient of variation for the nonzero catches, and the true mean square error (MSE) is
derived from the 2,000 simulations. For each simulation, 200 bootstrap replicates were generated to estimate the standard error; n is the cluster sample size.

True Average SE Percent deviation
State Species CV  n +MSE Approx. Jackknife Bootstrap Approx. Jackknife Bootstrap
Massachusetts  Atlantic Cod 3.09 10 6.09 3.43 4.96 6.80 —44 —19 12
20 3.67 2.35 3.42 4.14 —36 =7 13
30 258 1.87 2.65 3.00 —28 3 16
Massachusetts Longhorn Sculpin ~ 1.78 10 1.04 0.73 0.89 1.15 -30 —14 11
20 0.78 0.64 0.67 0.84 —18 —14 8
30 0.66 0.57 0.58 0.68 —14 —-12 3
Massachusetts  Yellowtail Flounder 2.06 10 1.13 0.67 0.90 1.24 —41 —-20 10
20 0.88 0.68 0.74 0.99 -23 —16 13
30 0.70 0.61 0.66 0.79 —13 —6 13
North Carolina  Spot 0.57 10  0.58 0.51 0.53 0.59 —12 —10 2
20 041 0.40 0.40 0.41 -3 —4 -1
30 034 0.33 0.33 0.34 -1 -3 1
North Carolina Blue crab 1.33 10  4.58 4.11 4.43 5.07 —10 -3 11
20 321 3.03 3.08 3.34 —6 —4 4
30 257 2.50 2.52 2.66 -3 -2 4

important because results are not always clear-cut and tests
are required to make decisions between alternative hypotheses.
For statistical methods, a null hypothesis of no difference is
defined before a test is performed and a significance level (e.g.,
5%, 1%) that determines whether the null hypothesis should be
rejected is chosen. Unfortunately, some samples may be very
aberrant due to chance and will mislead us into rejecting a
true null hypothesis, otherwise known as a type I error. The
chance of making a type I error is equal to the chosen level
of significance (o) expressed as a probability (Sokal and Rohlf
1995).

The implication of ignoring clustering of fisheries data is to
inflate the nominal type I error rate of statistical methods and
is due to two common mistakes made by researchers. First, the
variance of a population parameter is underestimated (greatly
in many cases) because the SRS variance formula is used, and
this directly affects standard statistical tests that use variance by
inflating the calculated test statistics (e.g., #-test statistic; Sokal
and Rohlf 1995). Second, the df are calculated incorrectly by
using the number of individuals rather than basing the df on the
level of independent information (e.g., Hedges 2007), and this
results in the selection of a test’s critical value, which is used to
accept or reject the null hypothesis, to be lower than it should
be. Because of these common errors, the null hypothesis of no
difference in statistical tests may be rejected more often than it
should be for a specified o level.

The inflation of a type I error caused by these common errors
can be severe. This is demonstrated in Figure 3 where mean
lengths of two identical, simulated populations with specific in-

tracluster correlation levels were compared by using the #-test
for unequal variances (Sokal and Rohlf 1995) over a range of
cluster sample sizes. A single population had 2,492 clusters of
random sizes with 886,190 fish generated from a negative bi-
nomial distribution fitted to number per tow data for Pinfish
Lagodon rhomboides off Tampa Bay, Florida (Nelson 2002).
For each intracluster correlation level, length data of each cluster
were generated by drawing randomly individual lengths from a
normal distribution parameterized with a randomly drawn mean
length (from a normal distribution with mean of 147 mm TL
and standard deviation adjusted to produce a desired intracluster
correlation) and SD of 18.14 mm. The second, identical popula-
tion was created by simply copying the original population data.
For each cluster sample size, an equal number of clusters was
selected randomly from each population and the mean lengths
compared by using the #-test. The type I error was calculated
from the number of significant tests in 5,000 simulations. In
Figure 3A, the SRS estimator of variance and the df based on
the total individuals were used in the test. Theoretically, the type
I error should not exceed 5% (o = 0.05) at each cluster sam-
ple size because there should be no difference in mean length
between the two populations except due to chance. This was
only true when p = 0.0 (Figure 3A). For p > 0, type I error
increased over small (10-100) cluster sample sizes collected
commonly in fisheries surveys (this is related to overestimation
of variance at low sample sizes) and it reached an asymptote
at larger sizes. Even at low intracluster correlation levels (e.g.,
0.02), the type I error was inflated by 14 times the nominal
level (Figure 3A). When the df and test statistics were corrected
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FIGURE 3. Type I error rates for a z-test with unequal variances used to
compare mean lengths of two identical populations with specific intracluster
correlation levels over a range of cluster sample sizes (A) ignoring clustering
and (B) corrected for clustering. See text for more information.

for clustering (Hedges 2007), the type I error did not exceed
the nominal level at any cluster sample size or intracluster cor-
relation level (Figure 3B). This example clearly shows that it
is highly likely that significant differences will be found when
there are no differences at all if clustering is ignored.

STATISTICAL ANALYSIS OF CLUSTERED DATA
IN FISHERIES RESEARCH

When the goal of analysis is to compare statistically fisheries
data among two or more groups of observations, the clustering
of data must be taken into account to produce unbiased
results and expected type I error rates. There are three general
approaches available for analyzing statistically clustered data:
(1) cluster-level analysis with observations within a cluster
reduced to single summary statistic (e.g., cluster mean or
proportion); (2) individual level analysis of observations with
standard formulae adjusted for clustering; and (3) multilevel
models that explicitly take into account clustering. The choice
of method will depend on research objectives, available data,
and software availability. Galbraith et al. (2010) and Picquelle
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and Mier (2011) reviewed the performance of several statistical
methods for clustered data described below.

Cluster-Level Analysis

A valid approach to analyzing clustered data is to reduce
the multiple observations in each cluster to a single summary
statistic, such as the mean or proportion, and use the resulting
values in statistical tests. This cluster-level approach reduces the
observations to the number of independent clusters and elim-
inates the violation of independence associated with clustered
data (degrees of freedom are calculated using the number of
clusters). For clusters with unequal sizes, clusters with more
observations should be given more weight in the analysis (Gal-
braith et al. 2010), and Kerry and Bland (2001) recommended
weighting the individual cluster summary values by the mini-
mum variance (w) calculated as

M;

W, =—"—""—"—" "
I+ (M; = Dp

where i is the cluster index, p is assumed to be known, and the
remaining definitions are as described previously. A common p
for two or more groups may be estimated by using a one-way
nested random effects model for unequal cluster sizes (Donner
1986). Applying weights to data points is accomplished easily in
most statistical software packages. Picquelle and Mier (2011)
recommended cluster-level analysis as one of the best of five
ANOVA methods they examined for comparing fish attributes.
An advantage of cluster-level analysis is that it is straightforward
and standard methods found in most statistics books can be used.
A disadvantage is that by reducing the observations in each
cluster to a single value, information regarding the individuals
is lost and an analysis may not be as powerful as an approach that
incorporates individual observations, particularly when cluster
sample size is small.

Individual-Level Analysis Adjusted for Clustering Effects
In this approach, standard statistical methods are applied
to the individual observations, but the calculated test statistics
are adjusted to take into account intracluster correlation. Tests
are available for normally distributed data (two-sample #-test:
Kish 1965; Hedges 2007; Wald test: Faes et al. 2009; ANOVA:
Hedges and Rhoads 2011; nested ANOVA: Hedges 2009), bi-
nary data (x2: Rao and Scott 1984, 1992), and nonnormally dis-
tributed data (Mann—Whitney U-test: Rosner and Grove 1999;
rank-sum test: Datta and Satten 2005). Typically, test statistics
are adjusted by using the VIF to inflate the variance used in the
calculation of the test statistic (Wears 2002), but for some tests,
the choice of df was not always clear (Hedges 2007). Recently,
Hedges (2007, 2009) and Hedges and Rhoads (2011) developed
t-test and ANOVA methods for unequal cluster sizes that adjust
the test statistics and compute the df based on a common intr-
acluster correlation coefficient among groups. An advantage of
these methods is that the df are determined for the level of in-
dependent information rather than assuming the df are based on
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the number of individuals (Blair and Higgins 1986) or the num-
ber of clusters (Wears 2002). The disadvantages of the above
methods is that the VIF formula used to correct the test statis-
tics may underestimate the true clustering effect for clusters of
unequal size (Eldridge et al. 2006).

An alternate approach to comparing clustered data of groups
that is applicable to fisheries data is to use randomization meth-
ods to develop tests for null hypotheses (Haddon 2001). Ran-
domization methods are very flexible, have no distributional
assumptions, and can be developed to test null hypotheses con-
cerning clustered data from one to many groups (Manly 1997).
In a general randomization test, an observed test statistic such as
the difference in means between two groups, is compared to an
empirical probability density function (PDF) of the test statistic
under the null hypothesis of no difference. The empirical PDF
is created by the repeated (>1,000) randomization (without re-
placement) of clusters from all groups into groups with sample
sizes equal to the number of clusters in original groups and the
calculation of the test statistic for each randomization. The null
hypothesis of no difference is rejected if the original test statistic
exceeds the empirical value at which the proportion of all em-
pirical values greater than or equal to the original test statistic
is less than or equal to a specified significance level (e.g., o =
0.05). Some advantages of randomization tests are that the test
statistic can be any single, smooth, continuous valued function
of the data, intracluster correlation is taken directly into account
in the null PDF because resampling takes place at the cluster
level, and the df are not needed to select a critical value. Some
disadvantages of randomization tests are that they do not work
well for small sample sizes (like most statistical tests), there is
no straightforward method to correct for comparison-wise error
rates in multiple comparisons, and some level of programming
will be required.

Multilevel Modeling Approaches

When analysis of clustered data requires more complex meth-
ods, linear models that take intracluster correlation directly into
account are available in most statistical software packages. The
two approaches reviewed below, linear mixed-effects models
(LME) and generalized estimating equations (GEE), handle
intracluster correlation in different ways. These methods are
particularly useful when there are covariates that need to be in-
cluded in the analysis, but they may require a minimum of 25
observations in each of 25 clusters with a single level of cluster-
ing to achieve their asymptotic performance (Ukoumunne et al.
1999).

Linear mixed-effects models are generalized linear models
that induce the within-cluster correlation by incorporating ran-
dom cluster-specific effects (Zuur et al. 2009). Covariates are
treated as either fixed or random effects. The LME models
assume normally distributed errors. Like general linear mod-
els, the error distribution must be assessed for adequate model
fit via standardized residuals plots and other diagnostic mea-
sures. Since the model may contain a mixture of fixed and ran-
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dom effects, optimal model selection is accomplished through
a top-down strategy using restricted maximum likelihood ratio
tests if nested, or by comparing Akaike information criterion
(AIC) or Bayesian information criterion (BIC) values among
models if not nested (Pinheiro and Bates 2004; Zuur et al.
2009). For analyses comparing fish attribute data, Picquelle and
Mier (2011) recommended using equal-variance and unequal-
variance nested mixed-effect models with restricted maximum
likelihood estimation if the number of fish are unbalanced be-
tween levels of a fixed covariate and if there is also heterogeneity
among hauls within each level.

Generalized estimating equations are generalized linear mod-
els (GLMs) with extensions that accommodate nonnormal error
distributions, mixed and fixed effects, a degree of nonlinear-
ity in the model structure, and correlations among observations
within independent clusters (Hardin and Hilbe 2003). The GEE
models separate the mean responses and treat the dependence
between observations as a nuisance parameter. The GEE es-
timates parameter coefficients and a correlation matrix with
a user-specified structure (for fisheries data, the exchangeable
or compound-symmetry correlation structure is useful since a
common correlation parameter is assumed for all clusters) using
quasi-likelihood methods (i.e., mean and variance function are
not from the exponential family). Like GLMs, link and variance
functions and selection of error distribution must be assessed
for adequate model fit via standardized residuals plots and other
diagnostic measures. The best correlation structure is chosen
by using the quasi-likelihood under independence model infor-
mation criterion (QIC) and the QIC is used in model selection
(Hardin and Hilbe 2003). Model comparisons can also be made
via naive likelihood ratio tests.

Nonlinear Modeling Approaches

Nonlinear mixed-effects models are available for fitting non-
linear mechanistic models (e.g., von Bertalanffy growth equa-
tion) that incorporate random cluster-specific effects and for
testing relationships between model parameters and covariates
such as group membership (Pinheiro and Bates 2004). Model
parameters and covariates are treated as either fixed or random
effects, where random effects represent deviations of the indi-
vidual parameters from the fixed effect. Like LMEs, normally
distributed errors are assumed and model fit must be assessed
via standardized residuals plots. Since the model may contain
a mixture of fixed and random effects, optimal model selection
is accomplished through a similar top-down strategy as linear
mixed-effects models (Pinheiro and Bates 2004:365-368) using
maximum likelihood ratio tests if nested, or by comparing AIC
or BIC values among models if not nested (Pinheiro and Bates
2004).

An alternate approach to model fitting is to use bootstrap
replicates of the clusters and estimate parameters of a nonlin-
ear model for each bootstrap sample using any nonlinear least-
squares estimation method. The mean and standard deviation
of the bootstrap parameters would be the estimates of model
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parameters and their associated standard errors. Confidence in-
tervals for the parameters can be obtained by using the percentile
bootstrap method (Haddon 2001).

IMPROVING PRECISION OF ESTIMATES AND POWER
OF STATISTICAL ANALYSES

Regardless of the type of data measured in fisheries research,
high variation will most likely be an inherent feature of
data when collected via cluster sampling. However, there are
changes to the survey design and sampling protocols that can
be made to improve the precision of estimates. The general
recommendation for improving precision in fisheries research is
to increase the number of tows (or hauls) made during a survey
because it is the variation among clusters that determines mostly
the precision of estimates when within-cluster similarity is high
(Pennington and Volstad 1994; Bogstad et al. 1995; Crone 1995;
Pennington et al. 2002; Zhang and Cadrin 2013). This can be
done without increasing survey costs much or altering attribute
composition by reducing tow duration and using the time saved
to increase the number of stations (Godo et al. 1990; Pennington
and Volstad 1991, 1994). Shorter tow duration would collect
fewer individuals, but the resulting sample would be more
representative of the entire population (Pennington et al. 2002).
In addition, the sampling strategy for individuals that produces
the most precise estimate of an attribute in conjunction with
increases in the number of stations can be determined through
scenario analysis by using the var(r)py equation (see Bogstad
etal. 1995) or simulation. In several cases, the optimal sampling
strategy has been to measure fewer individuals at each location
(Horppila and Peltonen 1992; Bogstad et al. 1995; Zhang
and Cadrin 2013) or collect fewer individuals from each
commercial trip when sampling catch (Aanes and Pennington
2003).

If a survey is conducted to test hypotheses about populations,
the type of analyses and power of the statistical tests must be
considered in the planning of the sampling design. If the inten-
tion is to analyze cluster-level variates, sample size and power
calculations may be performed to estimate the required number
of clusters required to achieve a specified difference (between
means or proportions) with a specified power by using the stan-
dard sample size equations for SRS given in most statistical
textbooks (e.g., Zar 1999). If use of statistical tests adjusted for
clustering is planned for group comparisons, standard sample
size equations may still be used to determine the number of
individuals required to achieve a given power, but they must
be adjusted for clustering by using the VIF (Ukoumunne et al.
1999). If the intention is to analyze data by using LME or GEE
models, sample size and power calculations may be determined,
but analysis will be rather complex if covariates are to be in-
cluded (Liu and Liang 1997; Berger and Tan 2004). Of course,
these types of analyses should be conducted in concert with
analyses used to determine changes in survey design needed
to improve the precision of estimates (discussed above) since
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sample size determination will depend ultimately on the level
of variation in data used in the statistical tests.

In reality, the ability to make changes to a survey design may
be limited. If the survey is well established or was originally de-
signed with multiple objectives in mind, changes to the design
(e.g., tow duration, number of stations) will likely be met with
resistance by the investigators because of concerns over histor-
ical continuity or impacts on data collected for other species.
Changes to sampling protocols (how fish are subsampled at each
station) may be met with less resistance, but are less likely to
make big improvements in the precision of estimates or power of
statistical tests because it is the variation in data among stations
that mostly determines the precision of estimates. Unless the
survey is designed from the start with estimation of population
attributes and hypothesis testing in mind, there may be little the
researcher can actually do to improve precision of estimates and
power of statistical analyses in fisheries research.

COMPUTER SOFTWARE

Many statistical techniques discussed in this paper are im-
plemented in the R statistical environment (R Development
Core Team 2013). The software package “fishmethods” (Nelson
2013) provides functions that estimate intracluster correlation,
calculate attribute mean and different variances (approximate,
jackknife, and bootstrap) for simple random cluster sampling,
calculate the two-sample ¢-test adjusted for clustering (Hedges
2007), and use randomization tests to compare length frequen-
cies for simple and stratified random cluster sampling. The pack-
age “survey” (Lumley 2012) provides functions for estimation
of survey statistics for more complex designs like stratified ran-
dom cluster sampling. Jackknifing can be performed by using
the package “bootstrap” (Tibshirani 2013) and bootstrapping
can be performed using either packages “bootstrap” or “boot”
(Canty and Ripley 2013). The linear and nonlinear mixed ef-
fects models are implemented in package “nlme” (Pinheiro and
Bates 2013), and GEEs are implemented in package “geepack”
(Yan et al. 2012). The R code to implement the rank-sum test for
clustered data is available from Galbraith et al. (2010). Meth-
ods for LME and GEE are also implemented in other statistical
packages such as SAS (SAS 2008) or STATA (Rabe-Hesketh
and Skrondal 2012).

CONCLUSIONS

Cluster sampling is a common survey design used perva-
sively in fisheries research to sample fish populations, but it is
not widely recognized. Because fish collected via cluster sam-
pling are not independent of each other, standard SRS estimators
and statistical tests that assume independence cannot be used to
make inference about fish populations. If the clustered nature of
fisheries data is ignored, the results and conclusions of analyses
may be severely biased because statistical tests will often in-
dicate significant differences in group comparisons when there
are none (type I error rate inflation). Three general methods for
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analyzing clustered data (cluster-level analysis, individual-level
analysis adjusted for clustering effects, and statistical modeling
approaches) take into account the clustered nature of fisheries
data and should be used to avoid inflation of type I error. The
precision of attribute estimates and power of statistical tests may
be improved by adding more stations to current surveys since
it is the variation in data among stations that determines mostly
the precision of estimates.
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